
Random Projections and Johnson-Lindenstrauss Lemma

Uri Shaham

January 20, 2025

1 Introduction: Linear Projections

Assume we have a datapoint x ∈ Rd, that we want to project onto a p-dimensional subspace of Rd

spanned by vectors {u1, . . . , up}, with p ≪ d. Let U = [u1, . . . , up] ∈ Rd×p. Let β represent coefficients
of the linear combination of the ui’s, so the data reconstruction is x̂ := Uβ. Each such projection will
have a residual r = x− x̂, which will be smallest when r ⊥ span{u1, . . . , up}. Hence

UT (x− Uβ) = 0 ⇒ β =
(
UTU

)−1
UTx.

Note that this is also the formula for the least squares coefficients. Then x̂ = Uβ = U
(
UTU

)−1
UTx.

Note that if the vectors {u1, . . . , up} are orthonormal (which makes U an orthogonal matrix), then the
formula simplifies to x̂ = Uβ = UUTx, which is the same as reconstruction by PCA, for example.

1.1 Random Linear Projections

In PCA, for example, the matrix U so that the vectors {u1, . . . , up} are directions with maximal variance.
However, we could also use a random U , i.e., not learn it at all. For example, by sampling its entries iid
from a standard Gaussian. Surprisingly, random U has good properties, in terms of distance preservation,
despite the fact that is is totally independent of the data. The JL lemma, described next justifies this.

2 The Johnson Lindenstrauss Lemma

We first state a prove that random projection preserves norms:

Lemma 2.1 (Norm preservation using RP). Let x ∈ Rd and let A ∈ Rp×d random matrix with entries
sampled iid from a N (0, 1) distribution. Let ϵ ∈ (0, 1

2). Then

Pr

(
(1− ϵ)∥x∥2 ≤

∥∥∥∥ 1
√
p
Ax

∥∥∥∥2 ≤ (1 + ϵ)∥x∥2
)

≥ 1− 2e−
(ϵ2−ϵ3)p

4 .

Proof. We first show that E
[∥∥∥ 1√

pAx
∥∥∥2] = E

[
∥x∥2

]
. First, note that E

[∥∥∥ 1√
pAx

∥∥∥2] = 1
p E
[
∥Ax∥2

]
.

1

Next, we compute the expectation of the i’th entry E[[Ax]2i]:

E[[Ax]2i] = E


 d∑

j=1

Aijxj

2


= E

 d∑
j=1

d∑
j′=1

AijAij′xjxj′


=

d∑
j=1

d∑
j′=1

xjxj′ E [AijAij′]

=

d∑
j=1

x2
j E
[
A2

ij

]
=

d∑
j=1

x2
j

= ∥x∥2.

Therefore
1

p
E
[
∥Ax∥2

]
= ∥x∥2.

Note that [Ax]i =
∑d

j=1 xjAij is a normal random variable with zero mean and, by the above, ∥x∥2

variance. Hence Z̃i := [Ax]i
∥x∥ is a standard normal random variable, with Z̃i and Z̃k independent for

i ̸= k. Thus, we can bound the probability of faliure for one side:

Pr

(∥∥∥∥ 1
√
p
Ax

∥∥∥∥2 ≤ (1− ϵ)∥x∥2
)

= Pr

(
p∑

i=1

Z̃2
i ≤ (1− ϵ)p

)
= Pr

(
χ2
p ≤ (1− ϵ)p

)
≤ exp

(
−p

4

(
ϵ2 − ϵ3

))
,

where the last transition is obtained using standard χ2 concentration bounds, which are stated in

Lemma 2.2 and are not proved here. A similar argument will show that Pr

(∥∥∥ 1√
pAx

∥∥∥2 ≥ (1 + ϵ)∥x∥2
)

≤

exp
(
−p

4

(
ϵ2 − ϵ3

))
, which together prove the statement.

Lemma 2.2 (χ2 concentration bounds).

Pr
(
χ2
p ≤ (1− ϵ)p

)
≤ exp

(
−p

4

(
ϵ2 − ϵ3

))
.

Pr
(
χ2
p ≥ (1 + ϵ)p

)
≤ exp

(
−p

4

(
ϵ2 − ϵ3

))
.

We can now state and prove the Johnson-Lindenstrauss lemma.

2

Lemma 2.3 (JL). Let ϵ ∈
(
0, 1

2

)
and Q ⊂ Rd be a set of n points,and let p ≥ 12 logn

ϵ2 . Then there exists

a mapping f : Rd → Rp such that for all v, u ∈ Q,

(1− ϵ)∥v − u∥2 ≤ ∥f(v)− f(u)∥2 ≤ (1 + ϵ)∥v − u∥2.

The proof is constructive (i.e., constructs f and works by the probabilistic method1, i.e., we prove
that the probability that the desired f exists is strictly greater than 0, hence it must exist. It utilizes
the union bound, which says that for a set of events {A1, A2, . . .}, Pr (∪iAi) ≤

∑
i Pr (Ai) .

Proof. Let f : x 7→ 1√
pAx, where A ∈ Rp×d is a random matrix with iid N (0, 1) entries. Then the

probability that the statement in the lemma fails is

Pr
(
∃u, v ∈ Q : (1− ϵ)∥v − u∥2 > ∥f(v)− f(u)∥2 or ∥f(v)− f(u)∥2 > (1 + ϵ)∥v − u∥2

)
≤
∑

u,v∈Q

Pr
(
(1− ϵ)∥v − u∥2 > ∥f(v)− f(u)∥2

)
+ Pr

(
∥f(v)− f(u)∥2 > (1 + ϵ)∥v − u∥2

)
≤ 2n2 exp

(
−p

4

(
ϵ2 − ϵ3

))
, (1)

where the last step is obtained by the norm preservation lemma, applied to the vector u− v, and using
the fact that the map f is linear. Finally, as p ≥ 12 logn

ϵ2 we have

2n2 exp
(
−p

4

(
ϵ2 − ϵ3

))
≤ 2n2 exp

(
−

12 logn
ϵ2

4

(
ϵ2 − ϵ3

))
≤ 2n2 exp(−3 log n) <

2

n
,

which is strictly less than 1 for 3 data points or more. Hence such a map must exist.

A corollary of the norm preservation lemma shows that random projections preserve inner products
as well.

Corollary 2.4. Let u, v ∈ Rd, with ∥u∥, ∥v∥ ≤ 1, and let f : x 7→ 1√
pAx be the JL transform as above.

Then
Pr (|⟨u, v⟩ − ⟨f(u), f(v)⟩| > ϵ) ≤ 4 exp

(
−p

4

(
ϵ2 − ϵ3

))
.

Proof. Applying the norm preservation lemma to the vectors u+ v, u− v we have that with probability
at least 1− 2 exp

(
−p

4

(
ϵ2 − ϵ3

))
,

(1− ϵ)∥u− v∥2 ≤ ∥f(u− v)∥2 ≤ (1 + ϵ)∥u− v∥2

(1− ϵ)∥u+ v∥2 ≤ ∥f(u+ v)∥2 ≤ (1 + ϵ)∥u+ v∥2

so

4⟨f(u), f(v)⟩ = ∥f(u+ v)∥2 − ∥f(u− v)∥2

≥ (1− ϵ)∥u+ v∥2 − (1 + ϵ)∥u− v∥2

= 4⟨u, v⟩ − 2ϵ(∥u∥2 + ∥v∥2)
≥ 4⟨u, v⟩ − 4ϵ,

so ⟨f(u), f(v)⟩ ≥ ⟨u, v⟩ − ϵ. Similarly, we can get ⟨f(u), f(v)⟩ ≤ ⟨u, v⟩ + ϵ, and both events occur
with probability at least 1− 2 exp

(
−p

4

(
ϵ2 − ϵ3

))
. Thus, by union bound, the probability of a failure is

bounded by 4 exp
(
−p

4

(
ϵ2 − ϵ3

))
.

1https://en.wikipedia.org/wiki/Probabilistic_method

3

https://en.wikipedia.org/wiki/Probabilistic_method

3 Application: Approximate Nearest Neighbor Search

Given a set of n data points X = {x1, . . . , xn} ⊂ Rd, and a query point y ∈ Rd, the goal of nearest
neighbor search is to find xi which minimizes the distance ∥xi − y∥. A naive implementation of NN
search has time complexity O(nd), simply by computing all distances. However, in practice we often
don’t really need the exact nearest neighbors, and approximate neighbors suffice.

Definition 3.1 (ϵ-approximate nearest neighbor). Given a query point y, ϵ-approximate nearest neigh-
bor search returns a point x ∈ X such that ∥x− y∥ ≤ (1 + ϵ)mini ∥xi − y∥.

In practice, the approximate nearest neighbor is approached via one more reduction, to a near
neighbor search.

Definition 3.2 ((ϵ, r)-approximate near neighbor search). Given a query point y, and a nonnegative
number r,(ϵ, r)-approximate near neighbor search works as follows:

• If there exists x ∈ X with ∥x − y∥ ≤ r, it returns “Yes” and an index i of a point such that
∥xi − y∥ ≤ (1 + ϵ)r.

• If there does not exist x ∈ X with ∥x− y∥ ≤ r, it returns “No”.

To solve ϵ-approximate nearest neighbor search using (ϵ, r)-approximate near neighbor search, we
can scale the data so that maxi ∥xi∥ = 1

2 , so the diameter (the distance between the two farthest points)
is at most 1. We start from δ, k such that 1

(1+δ)k
is sufficiently small, and run a sequence of (δ, r)-

approximate near neighbor searches with r = 1
(1+δ)k

, 1
(1+δ)k−1 , . . . , 1, and return i corresponding to the

minimum r for which the answer is “Yes”. Then we know that ∥xi − y∥ ≤ (1 + δ)r. In addition, we
know that mini ∥xi − y∥ > r

1+δ , hence altogether

∥xi − y∥ ≤ (1 + δ)r ≤ (1 + δ)2 min
i

∥xi − y∥.

That means we have solved ϵ-approximate nearest neighbor search with ϵ = 2δ+δ2, and k+1 applications
of ϵ-approximate nearest neighbor search.

3.1 Solving (ϵ, r)-approximate near neighbor search

Preprocessing We partition the space to d-dimensional cubes with side length ϵr√
d
. The diameter of

each cube is ϵr. Then for each point xi and cube C such that intersects the r-ball B(xi, r) around xi,
we insert the (key, value) pair (xi, C) to a dictionary.
Queries Given a query point y, we find the cube C which contains y. We then look for C in the
dictionary.

• If C does not exist, then for each xi, ∥xi − y∥ > r, so we say “No”.

• If C is in the dictionary, we get an arbitrary point xi such that B(xi, r) intersects C. Then
∥y − xi∥ ≤ ϵr + r = (1 + ϵ)r (the distance is bounded by r plus the diameter of the cube). Thus
we say “Yes” and return xi.

Space analysis The volume of d-dimensional ball of radius r is approximately 2O(d)rn/d
d
2 . The volume

of every cube is (ϵr
√
d)d. Thus each ball is intersected by approximately 2O(d)rn/d

d
2

(ϵr
√
d)d

= O(1/ϵ)d cubes.

Therefore the size of the dictionary is exponential in the dimension.
Time analysis based on the above, the time to build the dictionary is also O(1/ϵ)d. Finding the cube
C that contains y takes O(d) operations (we need to go over all coordinates), and then looking for C in
the dictionary is O(1).

4

3.2 Improving performance using JL

By the JL lemma, we know that distances are approximately preserved under random projection to
O(log n/ϵ2) dimensions, which is O(log n) assuming ϵ is constant. The time to apply the JL transform
to all n points is therefore O(dn log n). The dictionary space and time complexities are (1/ϵ)O(logn),
which is linear. Query time is d log n to apply the JL transform to y, and O(log n) to find the cube of y.

5

	Introduction: Linear Projections
	Random Linear Projections

	The Johnson Lindenstrauss Lemma
	Application: Approximate Nearest Neighbor Search
	Solving (, r)-approximate near neighbor search
	Improving performance using JL

